法国对哥斯达黎加预测-法国vs哥仑比亚分析
世界杯四分之一历史数据
尽管都是南美球队,但巴西和哥伦比亚在历史上相遇的次数并不多,在两队总共的14场交锋中,巴西7胜6平1负占据绝对优势。两队首次交锋是在1963年的美洲杯上,当时巴西5-1大胜对手;1989年的美洲杯上,再次相遇的两队则战成了0-0,而在1991年的美洲杯上,哥伦比亚曾2-0战胜了巴西,那也是该队历史上唯一一次击败桑巴军团。
除了美洲杯以外,巴西和哥伦比亚还在2002年世界杯的南美区预选赛上相遇,首回合哥伦比亚在主场0-0逼平了巴西,次回合回到主场,拥有天时地利的桑巴军团1-0小胜对手;2006年世界杯预选赛上,尽管巴西在主场被哥伦比亚逼成了0-0,但他们却在客场2-0战胜了对手;而在2010年南非世界杯预选赛的两回合比赛中,双方都是0-0握手言和。
巴西和哥伦比亚最近的一次交锋是在2012年11月,比赛性质是热身赛,那一次两队依然“和为贵”,双方最终的比分战成了1-1,那场比赛为巴西进球的是内马尔,而为哥伦比亚进球的则是胡安-夸德拉多,巧合的是两人都随队出征了本届世界杯,而且迄今为止表现都相当不俗——内马尔已经打入了4个进球,而夸德拉多则以4次助攻暂时领跑本届世界杯的助攻榜。
德国与法国历史上共有25次交锋,法国9胜5平11负,世界杯交锋三次,双方各胜一场,还有一场点球大战德国上演大逆袭
荷兰VS哥斯达黎加历史交锋战绩:从未有过交手
双方交战历史:
阿根廷和比利时此前相遇过两次,而且两次都是在世界杯的赛场——1982年世界杯,阿根廷和比利时分在同一个小组,结果欧洲红魔1-0小胜;4年后的1986年世界杯,比利时和阿根廷都闯入了四强,而在争夺决赛名额时,实力占据上风的阿根廷最终2-0击败了对手,拥有马拉多纳的潘帕斯雄鹰也在那届杯赛中问鼎冠军。
德国和法国实力分析对比。
法国2:1赢德国。
拭目以待!
不过,法国将止步四强,我猜阿根廷是冠军。
目前的8强逐鹿图如下:
4分之一决赛:
巴西VS哥伦比亚、哥斯达黎加VS荷兰、法国VS德国、阿根廷VS比利时
半决赛预测如下:
巴西VS法国、荷兰VS阿根廷
决赛预测如下:
巴西VS阿根廷
不出意外的话,阿根廷拿冠军的概率大。然后梅西封王!
巴西和阿根廷凭借主场和半主场的优势会师到决赛,决赛谁输谁赢还真不好说。
至于德国,他会碰到法国,遇法不胜这是德国的魔咒,法国将淘汰德国。然后与巴西遭遇,然后巴西凭借内马尔出色发挥和主场优势击败法国;幸运的是,阿根廷这次避开了日耳曼战车;不幸的是,阿根廷要与荷兰一决生死,尽管荷兰虽然有强劲的前锋范佩西和小飞侠,但是阿根廷的西西公主巾帼不让须眉,所以阿根廷最终将淘汰荷兰晋级决赛。
最后,巴西和阿根廷会师决赛,决战紫禁之颠!
综上,德国止步8强,法国、荷兰止步4强,阿巴决战,阿根廷问鼎,煤老板封王!
坐等史诗大片上映吧!骚年,好戏不多了,且看且珍惜!
希望对你有所帮助吧!
法国大学排名前十名
法国大学排名前十名如下:
1、巴黎高等师范学院
巴黎高等师范学院由法兰西第一共和国国民议会于1794年下令创建,位于巴黎邬尔姆路的圣·热内维埃芙山,是巴黎文理研究大学下属大学校,也是法国高师集团成员之一。巴黎高师一如其名,是一所师范大学,数百位法兰西学院院士、13名诺贝尔奖获得者、14名菲尔兹奖获得者〈世界第4),是世界重要的数学、科学和哲学研究中心。
2、巴黎综合理工大学
巴黎综合理工学院位于法国巴黎帕莱索,创办于1794年,隶属于法国国防部,是法国较为顶尖且较富盛名的工程师大学,在法国工程师大学校的排名中经常位居榜首,被誉为法国精英教育模式的巅峰。巴黎综合理工大学设有7大专业,以培养***才著名,培养了4位诺贝尔奖获得者,1名菲亚特奖得主,3位法国总统。
3、里昂高等师范学院
里昂高等师范学院位于法国法国里昂市,创办于1985年,是一所法国公立教育与研究机构,也是法国著名公立大学—里昂大学所属院校之一。里昂高师主要使命是培养数学、计算机信息学、物理学、化学、生物学、地球与宇宙科学等科学与技术领域的高水平的教J师和研究人员,其拥有卓越的科研实力、较高的国际化程度。
4、巴黎第六大学
巴黎第六大学(又称皮埃尔与玛丽-居里大学)创办于1971年,是巴黎科学学院和巴黎大学中科学师资的主要继承者,也是法国较大的科学和医学集合体。巴黎第六大学拥有超过180间实验室,绝大多数的实验室都与法国国家科学研究中心有合作关系,其在许多领域都处于顶尖水平;还拥有7个附属医院,并在法国各地设立了超过125个研究所.
5、巴黎中央理工-高等电力学院
巴黎中央理工-高等电力学院位于法兰西岛大区,创办于2015年,由巴黎中央理工学院和高等电力学院合并而成,现已并入巴黎萨克雷大学。巴黎中央理工-高等电力学院拥有2个校区,设有14个专业方向,建立起一套完善的教育体系,培养出了一批杰出的国家***和诺贝尔奖获得者。在2020QS世界大学排名中。
6、巴黎政治大学
巴黎政治学院,简称巴政,建立于1872年,是一所位于巴黎市中心的世界社科类大学校,也是欧洲社会科学大学联盟、国际事务专业学院协会成员,在欧洲乃至世界享有盛誉,被誉为法国社会精英的摇篮”。学习学科建设以政治学为中心,兼具历史学、法学、经济学和社会学;在2021QS世界大学学科排名中,巴黎政治大学的政治学科连续6年仅次于哈佛大学。
7、格勒诺布尔大学
格勒诺布尔大学又名格勒诺布尔-阿尔卑斯大学,建立于1339年5月12日,是一所拥有百年历史的国立综合研究型大学,也是具有世界影响力的法国公立大学。格勒诺布尔大学在科研领域扮演着重要的角色,格勒诺布尔大学也是牛津大学、哥伦比亚大学、加利福尼亚大学、蒙特利尔大学、新加坡国立大学等世界顶级高校的合作伙伴。
8、巴黎第十一大学
巴黎第十一大学,前身为巴黎大学理学院,成立于1970年1月1日,是一所包含理学、工学、经管、法律、信息、医药、运动科学等以理工科为主的法国富有声誉的综合性国立大学之一,也是具有"欧洲常春藤"之称的欧洲研究型大学联盟和索邦大学联盟成员。2020年1月1日开始,巴黎十一大官网正式宣布十一大的名字从此”消失”,与巴黎萨克雷大学完全合并。
9、巴黎第一大学
巴黎第一大学,成立于1971年,是一所以法律、政治、经济管理以及人文社会科学为主的法国公立高等院校,为法国与全世界培养了众多精英人才,并以其卓越的教育质量和领先的科研水平跻身世界综合性大学之列。巴黎一大与巴黎四大、六大统称为索邦大学,在政治、经济、法律、艺术及其他人文学科领域均处于法国顶端地位,并在西方学术界享有崇高声誉。
10、巴黎高科路桥学校
国立路桥学校又名巴黎高科路桥学校,由法国人罗道夫·贝罗耐创立于1747年,是法国第一所公立工程师大学,更是法国优秀的工程师院校之一,在法国高等教育体系中占据举足轻重的地位。将科技、人文与管理相结合,教学内容具有更新快,目的性强的特点;另外,该校还注重全球发展与国际合作,在4大洲共有67个合作伙伴院校,其中包括中国的清华大学。
二战 数学史
一样在起作用。看看第二次世界大战中数学家作出的贡献,你会对中国的陈景润们更加肃然起敬。
第二次世界大战,是人类文明的大浩劫。成千上万的人死于战祸,其中包括许多时间上最优秀的数学家,波兰学派将近三分之二的成员夭折,德国哥庭根学派全线崩溃。但是数学家没有被吓倒。大批有正义感的数学家投入了反法西斯的战斗。
一支高智商的反法西斯队伍
二战迫使美国政府将数学与科学技术、军事目标空前紧密地结合起来,开辟了美国数学发展的新时代。1941至1945年,政府提供的研究与发展经费占全国同类经费总额的比重骤增至86%。美国的“科学研究和发展局”(OSRD)于1940年成立了“国家防卫科学委员会(NDRC),为军方提供科学服务。1942年,NDRC又成立了应用数学组(AMP),它的任务是帮助解决战争中日益增多的数学问题。AMP和全美11所著名大学订有合同,全美最有才华的数学家都投入了遏制法西斯武力的神圣工作。AMP的大量研究涉及“改进设计以提高设备的理论精确度”以及“现有设备的最佳运用”,特别是空战方面的成果,到战争结束时共完成了200项重大研究。
在纽约州立大学,柯朗和弗里德里希领导的小组研究空气动力学、水下爆破和喷气火箭理论。超音速飞机带来的激波和声爆问题,利用“柯朗——弗里德里希——勒维的有限差分发”求出了这些课题的双曲型偏微分方程的解。布朗大学以普拉格为首的应用数学小组集中研究经典动力学和畸变介质力学,以提高军备的使用寿命。哈佛大学的G·伯克霍夫为海军研究水下弹道问题。哥伦比亚大学重点研究空对空射击学。例如,空中发弹弹道学;偏射理论;追踪曲线理论;追踪过程中自己速度的观测和刻划;中心火力系统的基本理论;空中发射装备测试程序的分析;雷达。
普林斯顿大学和新墨西哥大学为空军确定“应用B-29飞机的最佳战术”。冯·诺伊曼和乌拉姆研究和计算机。维纳和柯尔莫戈洛夫研究火炮自动瞄准仪。由丹泽西为首的运筹学家发明了解线性规划的单纯形算法,使美军在战略部署中直接受益。
破译密码的解剖刀——数学
英国数学家图灵出生于一个富有家庭,1935年在剑桥大学获博士学位后去美国的普林斯顿,为设计理想的通用计算机提供了理论基础。1939年图灵回到英国,立即受聘于外交部通讯处。当时德国法西斯用于绝密通讯的电报机叫“Enigma”(谜),图灵把拍电报的过程看成在一张纸带上穿孔,运用图灵的可计算理论,英国设计了一架破译机“Ultra”(超越)专门对付“Enigma”,破译了大批德军密码。
1941年5月21日,英国情报机关终于截获并破译了给海军上将雷德尔的一份密电。从而使号称当时世界上最厉害的一艘巨型战列舰,的“德国海军的骄傲”——“俾斯麦”号在首次出航中即葬身鱼腹。
1943年4月,日本海军最高司令部发出的绝密电波越过太平洋,到达驻南太平洋和日本占领的中国海港的各日本舰队,各舰队司令接到命令:日本联合舰队总司令长官大将,将于4月18日上午9时45分,由6架零式战斗机保护,乘两架轰炸机飞抵卡西里湾,山本的全部属员与他同行。
这份电报当即被美国海军的由数学家和组合学家组成的专家破译小组破译,通过海军部长弗兰克·诺克斯之手,马上被送到罗斯福的案头。于是,美国闪电式战斗机群在卡西里湾上空将山本的座机截住,座机在离山本的目的地卡西里只有几英里的荆棘丛中爆炸。
中途岛海战也是由于美国破译了日本密码,使日本4艘航空母舰,1艘巡洋舰被炸沉,330架飞机被击落;几百名经验丰富的飞行员和机务人员阵亡。而美国只损失了1艘航空母舰,1艘驱逐舰和147架飞机。
从此,日本丧失了在太平洋战场上的制空权和制海权。
一个一流数学家胜过10个师
1944年,韦弗接到请求,希望确定攻击日本大型军舰时水雷布阵的类型。但是美国海军对日本大型舰只的航速和转弯能力一无所知。幸运的是海军当局有许多这些军舰的照片。当把问题提到纽约州立大学韦弗的应用数学组时,马上有人提供了一个资料:1887年,数学家凯尔文曾研究过当船以常速直线前进时,激起的水波沿着船只前进的方向形成一个扇面,船边的角边缘的半角为19度28分,其速度可以由船首处两波尖顶的间隔计算出来。根据这个公式测算出了日舰的航速和转弯能力。
战争初期,的空军优势给同盟国造成了很大的威胁,英国面对德国的空袭,要求美国帮助增加地面防空力量。苏联在战争初期失利,要求数学家帮助军队保卫莫斯科,特别是防卫德军的空袭。这时,英国的维纳和苏联的柯尔莫戈洛夫几乎同时着手研究滤波理论与火炮自动控制问题。维纳给军方提供准确的数学模型以指挥火炮,使火炮的命中率大大提高。这一套数学理论组成了随即过程和控制论的基础。
在两军对垒的战斗中,许多问题要求进行快速估算和运用逼近方法。专攻纯数学的冯·诺伊曼立即把注意力放到数值分析方面。他从事可压缩气体运动以及滤波问题,开拓了激波的互相碰撞、激波发射方面的研究。
1943年底,他受奥本海默邀请,以顾问身份访问洛斯阿拉莫斯实验室,参加制造的工程,在内向爆炸理论、核爆炸的特征计算等方面都作出了巨大贡献。
二战中军备消耗惊人,研究质量控制和抽样验收方面如何节省的问题十分迫切。隶属于应用数学小组的哥伦比亚大学的统计研究小组的***瓦尔德研究出一种新的统计抽样方案,这便是现在通称的“序贯分析法”这一方案的发明,为美国军方节省了大量物资,仅这一项就远远超过AMP的全部经费。
在硝烟弥漫的战争中,数学家铸就了军队之魂。二战期间仅德国和奥地利就有近200名科学家移居美国,其中包括世界上最杰出的科学家。大批外来高科技人才的流入,给美国节省了巨额智力投资。美国军方从那时起,就十分热衷于资助数学研究和数学家,甚至对应用前景还不十分明显的项目,他们也乐于投资。美国认为,得到一个第一流的数学家,比俘获10个师的德军要有价值得多。有人认为,第一流的数学家移居美国,是美国在第二次世界大战中最大胜利之一。
二战中的数学智慧
巧妙对付日机轰炸。
太平洋战争初期,美军舰船屡遭日机攻击,损失率高达62%。美军急调大批数学专家对477个战例进行量化分析,得出两个结论:一是当日军飞机采取高空俯冲轰炸时,美舰船采取急速摆动规避战术的损失率为20%,采取缓慢摆动的损失率为100%;二是当日军飞机采取低空俯冲轰炸时,美军舰船采取急速摆动和缓慢摆动的损失平均为57%。美军根据对策论的最大最小化原理,从中找到了最佳方法:当敌机来袭时,采取急速摆动规避战术。据估算美军这一决策至少使舰船损失率从62%下降到27%。
理智避开德军潜艇。
1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击。当时,英美两国实力受限,又无力增派更多的护航舰艇。一时间,德军的“潜艇战”搞得盟军焦头烂额。为此,一位美国海军将领专门去请教了几位数学家。数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律:一定数量的船编队规模越小,编次就越多;编次越多,与敌人相遇的概率就越大。美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口,结果盟军舰队遭袭被击沉的概率由原来的25%下降为 1%,大大减少了损失。
算准深水炸弹的爆炸深度。
英军船队在大西洋里航行时,经常受到德军潜艇的攻击。而英国空军的轰炸对潜艇几乎构不成成胁。英军请来一些数学家专门研究这一问题,结果发现,渗艇从发现英军飞机开始下潜到深水炸弹爆炸时止,只下潜了7.6米,而炸弹却已下沉到21来处爆炸。经过科学论证,英军果断调整了深水炸弹的引信,使爆炸深度从水下21米减为水下9.1米,结果轰炸效果较过去提高了4倍。德军还误以为英军发明了新式炸弹。
飞机止损护英伦。
当德国对法国等几个国家发动攻势时,英国首相丘吉尔应法国的请求,动用了十几个防空中队的飞机和德国作战。这些飞机中队必须由大陆上的机场来维护和操作。空战中英军飞机损失惨重。与此同时,法国总理要求继续增派10个中队的飞机。丘吉尔决定同意这一请求。内阁知道此事后,找来数学家进行分析预测,并根据出动飞机与战损飞机的统计数据建立了回归预测模型。经过快速研究发现,如果补充率损失率不变,飞机数量的下降是非常快的,用一句话概括就是“以现在的损失率损失两周,英国在法国的‘飓风’式战斗机便—架也不存在了”,要求内阁否决这一决定。最后,丘吉尔同意了这—要求,并将除留在法国的3个中队外,其余飞机全部返回英国,为下一步的英伦保卫战保留了实力。
回答者:匿名 3-31 13:02
“二战”中数学在军事上的应用
第二次世界大战,是人类文明的大浩劫。成千上万的人死于战祸,其中包括许多世界上最优秀的数学家。波兰学派将近2/3的成员遇难。德国哥廷根学派烟消云散。但是数学家没有被吓倒。大批有正义感的数学家投入反法西斯的战斗。
“二战”迫使美国政府将数学、与科学技术、军事目标空前紧密地结合起来,开辟了美国数学发展的新时代。1941年美国参战,联邦政府开始大幅度增加科研经费的拨款。1941至1945年,政府提供的研究与发展经费占全国同类经费总额的比重骤增至86%。美国的“科学研究和发展局”于1940年成立了“国家防卫科学委员会” (NDRC),为军方提供科学服务。1942年,NDRC又成立了应用数学组(Applied Mathematics Panel,简称AMP)。它的任务是帮助解决战争中日益增多的数学问题。AMP和全美11所著名大学订有合同,全美最有才华的数学家都投入了这项工作。AMP的大量研究涉及“改进设计以提高设备的理论精确度”以及“现有设备的最佳运用”,特别是在空战方面,到战争结束时共完成了200项重大的研究。
在纽约州立大学,柯朗和弗里德里希领导的小组研究空气动力学、水下爆破和喷气火箭理论。超音速飞机带来的激波和声爆问题,利用“柯朗--弗里德里希--勒维的有限差分法”求出了这些课题的双曲型偏微分方程的解。布朗大学以普拉格为首的应用数学小组集中研究经典动力学和畸变介质力学,提高军备的使用寿命。哈佛大学的G?伯克霍夫为海军研究水下弹道问题。哥伦比亚大学重点研究空对空射击学,例如:空中发弹弹道学,偏射理论,追踪曲线理论,追踪过程中自己速度的观测与刻划,中心火力系统的基本理论,空中发射装备测试程序的分析,稳定性,雷达。普林斯顿大学和新墨西哥大学为空军确定“应用B--29飞机的最佳战术”。冯?诺伊曼和乌拉姆研究和计算机。维纳和柯尔莫戈洛夫研究火炮自动瞄准仪。图灵破译德军密码。总之,法西斯疯狂扩张严重威胁着美国的利益与安全。因此,如何利用最新科技成就武装现代化军事武器来遏制敌人?迅速被提上战时美国科技战略的中心议程。
英国数学家图灵出生于一个富有的家庭,1935年在剑桥大学获博士学位后去美国的普林斯顿。他1937年写的《可计算数及其在判定问题上的应用》一文,为设计理想的通用计算机提供了理论基础。他是关于数字计算机智力、可计算性概念最早的论述者之一。1939年图灵回到英国,立即受聘于外交部通讯处。当时德国用于绝密通讯的电报机叫“Enigma”(谜),图灵把拍电报的过程看成在一条纸带上穿孔,运用图灵的可计算理论,英国设计了一架破译机“Ultra”(超越)专门对付“谜”机,破译了大批德军密码。1943年4月,日本海军最高司令部发出的极其秘密的无线电波,飞越了浩瀚的太平洋,到达了驻在南太平洋和日本占领的中国海港的各日本舰队,各舰队的司令官接到命令:日本联合舰队总司令长官海军大将,将于4月18日上午9时45分,在六架零式战斗机保护下,乘两架三菱轰炸机飞抵卡西里湾,山本的全部属员与他同行。这份绝密电报当即被美国海军通讯情报局的专家们破译出来,通过海军部长弗兰克?诺克斯之手,马上被放到罗斯福的案头上。于是,一个海空奇袭山本海军大将座机的战斗计划在酝酿、制定之中。4月16日早晨7点35分,美国闪电式战斗机群腾空而起,终于在卡西里湾上空将山本的座机哉住,兰菲尔少校在紧追中两次开炮,山本的座机右引擎和左机翼先后爆炸起火,最后两翼折断朝东坠落,机身在离山本的目的地卡西里只有几哩的荆棘丛中爆炸。
1941年5月21日,英国情报机关截获并破译了给海军上将雷德尔的一份密电。从而使号称当时世界上最厉害的一艘巨型战列舰,的“德国海军的骄傲”“俾斯麦”号葬身鱼腹。
1940年,的空军优势给同盟军造成很大的困难,英国面对德国的空袭,要求美国帮助增加地面防空力量。苏联在战争初期失利,要求科学家帮助军队保卫莫斯科,特别是防卫德军的空袭。这时英国的维纳和苏联的柯尔莫戈洛夫几乎同时着手研究滤波理论与火炮的自动控制问题。维纳认为:潜水艇和轰炸机的战斗是两个我们应用数学帮助制服的主要威胁。
研究自动跟踪火炮的困难在于:飞机的速度和炮弹的速度差不多,要击中敌机必须预测未来位置的方法,并且观测到实际位置数据校正火炮的方位和仰角,使炮弹能击中敌机。由于观测是有误差的,敌机的飞行位置和大炮的发射角度都带有随机性,因此,必须研究随机过程预测理论。将观察到的数据滤去误差成分,用准确的数据指挥火炮,使火炮的命中率大大提高。这一套数学理论组成了随机过程和控制论的基础。
在现代战争中,许多问题要求进行快速估算和运用逼近方法。专攻纯粹数学的冯?诺伊曼立即把注意力放到数值分析方面,他提出并解决了高阶矩阵求逆问题。他从事可压缩气体运动以及激波问题,开拓了激波的互相碰撞、激波反射方面的研究。他不仅从理论上分析,而且给出了最佳计算方案——差分格式以及计算格式的数学稳定性条件。1943年底,他受奥本海默邀请以顾问身份访问洛斯?阿拉莫斯实验室,参加制造的工程,在内向爆炸理论、核爆炸的特征计算、热核反应条件方面都作出了巨大的贡献。
“二战”中军备消耗惊人,研究质量控制和、抽样验收方面如何节省的问题十分迫切。隶属于应用数学小组的哥伦比亚大学的统计研究小组的***瓦尔德发现,传统的统计抽样试验要求很多步骤,每一步骤取得的数据却只和最后结论有关,而每个步骤之间没有关系。于是瓦尔德研究出一种由上一步决定下一步如何抽样以及下一步是否停止的统计抽样方案,这便是现在通称的“序贯分析法”。这一方案的发明,为美国军方节省了大量物资,仅这一项就远远超过AMP的全部经费。
1944年,韦弗接到请求,希望确定攻击日本大型军舰的水雷布阵的类型。但是美国海军对日本大军舰的航速和转弯能力一无所知。幸运的是海军当局有许多这些军舰的照片。当把问题提到纽约州立大学应用数学组时,马上有人提供了一个资料:1887年,数学家凯尔文曾研究过当船以常速直线前进时,激起的水波沿着船只前进的方向形成一个扇面,船边到角边缘的半角为19°28′,其速度可以由船首处两波尖顶的间隔计算出来。根据这个公式测算出了日舰的航速和转弯能力。
“二战”期间仅德国和奥地科就有近200名科学家移居美国,其中包括世界上最优秀的数学家。大批外来人才的流入,给美国节省了巨额智力投资。美国认为,得到一个第一流的科学家,比俘获10个师的德军。要有价值得多。有人认为第一流数学家移居美国,是美国在第二次世界大战中最大的胜利之一。
战神如果是个数学家,那他取胜的几率就会大增。从人类早期的战争开始,数学就无所不在。不论是发射弩箭还是挖掘地道攻城,数学定律就像冥冥之中的命运之神一样在起作用。看看第二次世界大战中数学家作出的贡献,你会对中国的陈景润们更加肃然起敬。
第二次世界大战,是人类文明的大浩劫。成千上万的人死于战祸,其中包括许多时间上最优秀的数学家,波兰学派将近三分之二的成员夭折,德国哥庭根学派全线崩溃。但是数学家没有被吓倒。大批有正义感的数学家投入了反法西斯的战斗。
一支高智商的反法西斯队伍
二战迫使美国政府将数学与科学技术、军事目标空前紧密地结合起来,开辟了美国数学发展的新时代。1941至1945年,政府提供的研究与发展经费占全国同类经费总额的比重骤增至86%。美国的“科学研究和发展局”(OSRD)于1940年成立了“国家防卫科学委员会(NDRC),为军方提供科学服务。1942年,NDRC又成立了应用数学组(AMP),它的任务是帮助解决战争中日益增多的数学问题。AMP和全美11所著名大学订有合同,全美最有才华的数学家都投入了遏制法西斯武力的神圣工作。AMP的大量研究涉及“改进设计以提高设备的理论精确度”以及“现有设备的最佳运用”,特别是空战方面的成果,到战争结束时共完成了200项重大研究。
在纽约州立大学,柯朗和弗里德里希领导的小组研究空气动力学、水下爆破和喷气火箭理论。超音速飞机带来的激波和声爆问题,利用“柯朗——弗里德里希——勒维的有限差分发”求出了这些课题的双曲型偏微分方程的解。布朗大学以普拉格为首的应用数学小组集中研究经典动力学和畸变介质力学,以提高军备的使用寿命。哈佛大学的G·伯克霍夫为海军研究水下弹道问题。哥伦比亚大学重点研究空对空射击学。例如,空中发弹弹道学;偏射理论;追踪曲线理论;追踪过程中自己速度的观测和刻划;中心火力系统的基本理论;空中发射装备测试程序的分析;雷达。
普林斯顿大学和新墨西哥大学为空军确定“应用B-29飞机的最佳战术”。冯·诺伊曼和乌拉姆研究和计算机。维纳和柯尔莫戈洛夫研究火炮自动瞄准仪。由丹泽西为首的运筹学家发明了解线性规划的单纯形算法,使美军在战略部署中直接受益。
破译密码的解剖刀——数学
英国数学家图灵出生于一个富有家庭,1935年在剑桥大学获博士学位后去美国的普林斯顿,为设计理想的通用计算机提供了理论基础。1939年图灵回到英国,立即受聘于外交部通讯处。当时德国法西斯用于绝密通讯的电报机叫“Enigma”(谜),图灵把拍电报的过程看成在一张纸带上穿孔,运用图灵的可计算理论,英国设计了一架破译机“Ultra”(超越)专门对付“Enigma”,破译了大批德军密码。
1941年5月21日,英国情报机关终于截获并破译了给海军上将雷德尔的一份密电。从而使号称当时世界上最厉害的一艘巨型战列舰,的“德国海军的骄傲”——“俾斯麦”号在首次出航中即葬身鱼腹。
1943年4月,日本海军最高司令部发出的绝密电波越过太平洋,到达驻南太平洋和日本占领的中国海港的各日本舰队,各舰队司令接到命令:日本联合舰队总司令长官大将,将于4月18日上午9时45分,由6架零式战斗机保护,乘两架轰炸机飞抵卡西里湾,山本的全部属员与他同行。
这份电报当即被美国海军的由数学家和组合学家组成的专家破译小组破译,通过海军部长弗兰克·诺克斯之手,马上被送到罗斯福的案头。于是,美国闪电式战斗机群在卡西里湾上空将山本的座机截住,座机在离山本的目的地卡西里只有几英里的荆棘丛中爆炸。
中途岛海战也是由于美国破译了日本密码,使日本4艘航空母舰,1艘巡洋舰被炸沉,330架飞机被击落;几百名经验丰富的飞行员和机务人员阵亡。而美国只损失了1艘航空母舰,1艘驱逐舰和147架飞机。
从此,日本丧失了在太平洋战场上的制空权和制海权。
一个一流数学家胜过10个师
1944年,韦弗接到请求,希望确定攻击日本大型军舰时水雷布阵的类型。但是美国海军对日本大型舰只的航速和转弯能力一无所知。幸运的是海军当局有许多这些军舰的照片。当把问题提到纽约州立大学韦弗的应用数学组时,马上有人提供了一个资料:1887年,数学家凯尔文曾研究过当船以常速直线前进时,激起的水波沿着船只前进的方向形成一个扇面,船边的角边缘的半角为19度28分,其速度可以由船首处两波尖顶的间隔计算出来。根据这个公式测算出了日舰的航速和转弯能力。
战争初期,的空军优势给同盟国造成了很大的威胁,英国面对德国的空袭,要求美国帮助增加地面防空力量。苏联在战争初期失利,要求数学家帮助军队保卫莫斯科,特别是防卫德军的空袭。这时,英国的维纳和苏联的柯尔莫戈洛夫几乎同时着手研究滤波理论与火炮自动控制问题。维纳给军方提供准确的数学模型以指挥火炮,使火炮的命中率大大提高。这一套数学理论组成了随即过程和控制论的基础。
在两军对垒的战斗中,许多问题要求进行快速估算和运用逼近方法。专攻纯数学的冯·诺伊曼立即把注意力放到数值分析方面。他从事可压缩气体运动以及滤波问题,开拓了激波的互相碰撞、激波发射方面的研究。
1943年底,他受奥本海默邀请,以顾问身份访问洛斯阿拉莫斯实验室,参加制造的工程,在内向爆炸理论、核爆炸的特征计算等方面都作出了巨大贡献。
二战中军备消耗惊人,研究质量控制和抽样验收方面如何节省的问题十分迫切。隶属于应用数学小组的哥伦比亚大学的统计研究小组的***瓦尔德研究出一种新的统计抽样方案,这便是现在通称的“序贯分析法”这一方案的发明,为美国军方节省了大量物资,仅这一项就远远超过AMP的全部经费。
在硝烟弥漫的战争中,数学家铸就了军队之魂。二战期间仅德国和奥地利就有近200名科学家移居美国,其中包括世界上最杰出的科学家。大批外来高科技人才的流入,给美国节省了巨额智力投资。美国军方从那时起,就十分热衷于资助数学研究和数学家,甚至对应用前景还不十分明显的项目,他们也乐于投资。美国认为,得到一个第一流的数学家,比俘获10个师的德军要有价值得多。有人认为,第一流的数学家移居美国,是美国在第二次世界大战中最大胜利之一。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。